use macroquad::{prelude::*, rand::gen_range}; use nalgebra::*; use r::Rng; use rand_distr::Normal; use serde::{Deserialize, Serialize}; extern crate rand as r; lazy_static::lazy_static! { static ref CONNECTION_DISTRIBUTION: Normal = Normal::new(0.0, 0.75).unwrap(); } #[derive(PartialEq, Debug, Clone, Copy, Serialize, Deserialize)] pub enum ActivationFunc { ReLU, Sigmoid, Tanh, } #[derive(Clone, Debug, Serialize, Deserialize)] pub struct NN { pub config: Vec, pub weights: Vec>, pub activ_func: ActivationFunc, pub mut_rate: f32, } impl NN { // Vec of number of neurons in input, hidden 1, hidden 2, ..., output layers pub fn new(config: Vec, mut_rate: f32, activ: ActivationFunc) -> Self { let mut rng = r::thread_rng(); Self { config: config .iter() .enumerate() .map(|(i, &x)| if i != config.len() - 1 { x + 1 } else { x }) .collect(), // He-et-al Initialization weights: config .iter() .zip(config.iter().skip(1)) .map(|(&curr, &last)| { // DMatrix::from_fn(last, curr + 1, |_, _| gen_range(-1., 1.)) DMatrix::::from_distribution( last, curr + 1, &*CONNECTION_DISTRIBUTION, &mut rng, ) * (2. / last as f32).sqrt() }) .collect(), mut_rate, activ_func: activ, } } pub fn crossover(a: &NN, b: &NN) -> Self { assert_eq!(a.config, b.config, "NN configs not same."); Self { config: a.config.to_owned(), activ_func: a.activ_func, mut_rate: a.mut_rate, weights: a .weights .iter() .zip(b.weights.iter()) .map(|(m1, m2)| { m1.zip_map(m2, |ele1, ele2| { let choice = gen_range(0., 3.); if choice < 1. { ele1 } else if choice < 2. { ele2 } else { (ele1 + ele2) / 2. } }) }) .collect(), } } pub fn mutate(&mut self) { for weight in &mut self.weights { for ele in weight { if gen_range(0., 1.) < self.mut_rate { // *ele += gen_range(-1., 1.); // *ele = gen_range(-1., 1.); *ele += r::thread_rng().sample::>(CONNECTION_DISTRIBUTION.clone()); *ele = ele.min(10.0).max(-10.0); } } } } pub fn feed_forward(&self, inputs: &Vec) -> Vec { // println!("inputs: {:?}", inputs); let mut y = DMatrix::from_vec(inputs.len(), 1, inputs.to_vec()); for i in 0..self.config.len() - 1 { let row = y.insert_row(self.config[i] - 1, 1.); y = (&self.weights[i] * row).map(|x| match self.activ_func { ActivationFunc::ReLU => x.max(0.), ActivationFunc::Sigmoid => 1. / (1. + (-x).exp()), ActivationFunc::Tanh => x.tanh(), }); } y.column(0).data.into_slice().to_vec() } pub fn draw(&self, width: f32, height: f32, inputs: &Vec, outputs: &Vec, bias: bool) { draw_rectangle_lines(-width * 0.5, -height * 0.5, width, height, 2., WHITE); let width = width * 0.8; let height = height * 0.8; let vspace = height / (self.config.iter().max().unwrap() - 1) as f32; let mut p1s: Vec<(f32, f32)>; let mut p2s: Vec<(f32, f32)> = Vec::new(); for (i, layer) in self .config .iter() .take(self.config.len() - 1) .map(|x| x - if bias { 0 } else { 1 }) .chain(self.config.last().map(|&x| x)) .enumerate() { p1s = p2s; p2s = Vec::new(); for neuron in 0..layer { p2s.push(( i as f32 * width / (self.config.len() - 1) as f32 - width * 0.5, neuron as f32 * vspace - (vspace * (layer - 1) as f32) * 0.5, )); } for (k, j, p1, p2) in p1s.iter().enumerate().flat_map(|(k, x)| { p2s.iter() .take( p2s.len() - if i == self.config.len() - 1 || !bias { 0 } else { 1 }, ) .enumerate() .map(move |(j, y)| (k, j, *x, *y)) }) { let weight = *self.weights[i - 1].index((j, k)); let c = if weight < 0. { 0. } else { 1. }; draw_line( p1.0, p1.1, p2.0, p2.1, 1.5, Color::new(1., c, c, weight.abs()), ); } let mut inputs = inputs.to_vec(); inputs.push(1.); for (j, p) in p1s.iter().enumerate() { draw_circle(p.0, p.1, 10., WHITE); draw_circle(p.0, p.1, 8., BLACK); draw_circle( p.0, p.1, 8., if i == 1 && inputs.len() > 1 { let c = if inputs[j] < 0. { 0. } else { 1. }; Color::new(1., c, c, inputs[j].abs()) } else { BLACK }, ); if i == 1 && inputs.len() > 1 { draw_text( &format!("{:.2}", inputs[j]), p.0 - if inputs[j] < 0. { 50. } else { 42. }, p.1 + 4., 16., WHITE, ); } } } for (j, p) in p2s.iter().enumerate() { draw_circle(p.0, p.1, 10., WHITE); draw_circle(p.0, p.1, 8., BLACK); if !outputs.is_empty() { draw_circle(p.0, p.1, 8., Color::new(1., 1., 1., outputs[j])); draw_text( &format!("{:.2}", outputs[j]), p.0 + 14., p.1 + 4., 16., WHITE, ); } } draw_rectangle(width * 0.47, height * 0.47, 10., 10., RED); let params = TextParams { font_size: 40, font_scale: 0.5, ..Default::default() }; draw_text_ex("-ve", width * 0.47 + 20., height * 0.47 + 10., params); draw_rectangle(width * 0.47, height * 0.47 + 20., 10., 10., WHITE); draw_text_ex("+ve", width * 0.47 + 20., height * 0.47 + 30., params); } pub fn export(&self) -> String { serde_json::to_string(self).unwrap() } pub fn import(path: &str) -> NN { let json = std::fs::read_to_string(path).expect("Unable to read file"); serde_json::from_str(&json).unwrap() } }