use nalgebra::*; use r::Rng; use rand_distr::StandardNormal; extern crate rand as r; #[derive(PartialEq, Debug, Clone, Copy)] enum ActivationFunc { Sigmoid, Tanh, ReLU, } pub struct NN { config: Vec, weights: Vec>, activ_func: ActivationFunc, mut_rate: f32, } impl NN { // Vec of number of neurons in input, hidden 1, hidden 2, ..., output layers pub fn new(config: Vec) -> Self { let mut rng = r::thread_rng(); Self { config: config .iter() .enumerate() .map(|(i, &x)| if i != config.len() - 1 { x + 1 } else { x }) .collect(), // He-et-al Initialization weights: config .iter() .zip(config.iter().skip(1)) .map(|(&curr, &last)| { DMatrix::::from_distribution(last, curr + 1, &StandardNormal, &mut rng) * (2. / last as f32).sqrt() }) .collect(), activ_func: ActivationFunc::ReLU, mut_rate: 0.05, } } pub fn crossover(a: &NN, b: &NN) -> Self { assert_eq!(a.config, b.config, "NN configs not same."); Self { config: a.config.to_owned(), activ_func: a.activ_func, mut_rate: a.mut_rate, weights: a .weights .iter() .zip(b.weights.iter()) .map(|(m1, m2)| m1.zip_map(m2, |ele1, ele2| if r::random() { ele1 } else { ele2 })) .collect(), } } pub fn mutation(&mut self) { for weight in &mut self.weights { for ele in weight { if r::random() { *ele = r::thread_rng().sample::(StandardNormal) * 0.05; } } } } pub fn feed_forward(&self, inputs: Vec) -> Vec { let mut y = DMatrix::from_vec(inputs.len(), 1, inputs); for i in 0..self.config.len() - 1 { y = (&self.weights[i] * y.insert_row(self.config[i] - 1, 1.)).map(|x| { match self.activ_func { ActivationFunc::ReLU => x.max(0.), ActivationFunc::Sigmoid => 1. / (1. + (-x).exp()), ActivationFunc::Tanh => x.tanh(), } }); } y.column(0).data.into_slice().to_vec() } }