asteroids-genetic/src/nn.rs

56 lines
1.6 KiB
Rust
Raw Normal View History

2022-10-09 18:14:22 +00:00
use nalgebra::*;
use rand_distr::StandardNormal;
extern crate rand as r;
enum ActivationFunc {
Sigmoid,
Tanh,
ReLU,
}
pub struct NN {
config: Vec<usize>,
weights: Vec<DMatrix<f32>>,
activ_func: ActivationFunc,
}
impl NN {
// Vec of number of neurons in input, hidden 1, hidden 2, ..., output layers
pub fn new(config: Vec<usize>) -> Self {
let mut rng = r::thread_rng();
Self {
config: config
.iter()
.enumerate()
.map(|(i, &x)| if i != config.len() - 1 { x + 1 } else { x })
.collect(),
// He-et-al Initialization
weights: config
.iter()
.zip(config.iter().skip(1))
.map(|(&curr, &last)| {
DMatrix::<f32>::from_distribution(last, curr + 1, &StandardNormal, &mut rng)
* (2. / last as f32).sqrt()
})
.collect(),
activ_func: ActivationFunc::ReLU,
}
}
pub fn feed_forward(&self, inputs: Vec<f32>) {
let mut y = DMatrix::from_vec(inputs.len(), 1, inputs);
for i in 0..self.config.len() - 1 {
println!("{} {}", y, self.weights[i]);
y = (&self.weights[i] * y.insert_row(self.config[i] - 1, 1.)).map(|x| {
match self.activ_func {
ActivationFunc::ReLU => x.max(0.),
ActivationFunc::Sigmoid => 1. / (1. + (-x).exp()),
ActivationFunc::Tanh => x.tanh(),
}
});
}
println!("{}", y);
}
}