93 lines
2.8 KiB
Rust
93 lines
2.8 KiB
Rust
use macroquad::rand::gen_range;
|
|
use nalgebra::*;
|
|
use r::Rng;
|
|
use rand_distr::StandardNormal;
|
|
extern crate rand as r;
|
|
|
|
#[derive(PartialEq, Debug, Clone, Copy)]
|
|
enum ActivationFunc {
|
|
Sigmoid,
|
|
Tanh,
|
|
ReLU,
|
|
}
|
|
|
|
#[derive(Clone, Debug)]
|
|
pub struct NN {
|
|
pub config: Vec<usize>,
|
|
pub weights: Vec<DMatrix<f32>>,
|
|
activ_func: ActivationFunc,
|
|
mut_rate: f32,
|
|
}
|
|
|
|
impl NN {
|
|
// Vec of number of neurons in input, hidden 1, hidden 2, ..., output layers
|
|
pub fn new(config: Vec<usize>) -> Self {
|
|
let mut rng = r::thread_rng();
|
|
|
|
Self {
|
|
config: config
|
|
.iter()
|
|
.enumerate()
|
|
.map(|(i, &x)| if i != config.len() - 1 { x + 1 } else { x })
|
|
.collect(),
|
|
|
|
// He-et-al Initialization
|
|
weights: config
|
|
.iter()
|
|
.zip(config.iter().skip(1))
|
|
.map(|(&curr, &last)| {
|
|
// let a = DMatrix::<f32>::new_random(last, curr + 1);
|
|
// println!("{}", a);
|
|
// a
|
|
DMatrix::<f32>::from_distribution(last, curr + 1, &StandardNormal, &mut rng)
|
|
* (2. / last as f32).sqrt()
|
|
})
|
|
.collect(),
|
|
|
|
activ_func: ActivationFunc::ReLU,
|
|
mut_rate: 0.02,
|
|
}
|
|
}
|
|
|
|
pub fn crossover(a: &NN, b: &NN) -> Self {
|
|
assert_eq!(a.config, b.config, "NN configs not same.");
|
|
Self {
|
|
config: a.config.to_owned(),
|
|
activ_func: a.activ_func,
|
|
mut_rate: a.mut_rate,
|
|
weights: a
|
|
.weights
|
|
.iter()
|
|
.zip(b.weights.iter())
|
|
.map(|(m1, m2)| m1.zip_map(m2, |ele1, ele2| if r::random() { ele1 } else { ele2 }))
|
|
.collect(),
|
|
}
|
|
}
|
|
|
|
pub fn mutate(&mut self) {
|
|
for weight in &mut self.weights {
|
|
for ele in weight {
|
|
if gen_range(0., 1.) < self.mut_rate {
|
|
// *ele += gen_range(-1., 1.);
|
|
*ele = r::thread_rng().sample::<f32, StandardNormal>(StandardNormal);
|
|
// *ele = r::thread_rng().sample::<f32, StandardNormal>(StandardNormal);
|
|
}
|
|
}
|
|
}
|
|
}
|
|
|
|
pub fn feed_forward(&self, inputs: Vec<f32>) -> Vec<f32> {
|
|
let mut y = DMatrix::from_vec(inputs.len(), 1, inputs);
|
|
for i in 0..self.config.len() - 1 {
|
|
y = (&self.weights[i] * y.insert_row(self.config[i] - 1, 1.)).map(|x| {
|
|
match self.activ_func {
|
|
ActivationFunc::ReLU => x.max(0.),
|
|
ActivationFunc::Sigmoid => 1. / (1. + (-x).exp()),
|
|
ActivationFunc::Tanh => x.tanh(),
|
|
}
|
|
});
|
|
}
|
|
y.column(0).data.into_slice().to_vec()
|
|
}
|
|
}
|