asteroids-genetic/src/nn.rs

87 lines
2.5 KiB
Rust
Raw Normal View History

2022-10-09 18:14:22 +00:00
use nalgebra::*;
2022-10-09 19:46:27 +00:00
use r::Rng;
2022-10-09 18:14:22 +00:00
use rand_distr::StandardNormal;
extern crate rand as r;
2022-10-09 19:46:27 +00:00
#[derive(PartialEq, Debug, Clone, Copy)]
2022-10-09 18:14:22 +00:00
enum ActivationFunc {
Sigmoid,
Tanh,
ReLU,
}
2022-10-10 18:36:14 +00:00
#[derive(Clone)]
2022-10-09 18:14:22 +00:00
pub struct NN {
2022-10-10 18:36:14 +00:00
pub config: Vec<usize>,
2022-10-09 20:11:24 +00:00
weights: Vec<DMatrix<f32>>,
2022-10-09 18:14:22 +00:00
activ_func: ActivationFunc,
2022-10-09 19:46:27 +00:00
mut_rate: f32,
2022-10-09 18:14:22 +00:00
}
impl NN {
// Vec of number of neurons in input, hidden 1, hidden 2, ..., output layers
pub fn new(config: Vec<usize>) -> Self {
let mut rng = r::thread_rng();
Self {
config: config
.iter()
.enumerate()
.map(|(i, &x)| if i != config.len() - 1 { x + 1 } else { x })
.collect(),
// He-et-al Initialization
weights: config
.iter()
.zip(config.iter().skip(1))
.map(|(&curr, &last)| {
DMatrix::<f32>::from_distribution(last, curr + 1, &StandardNormal, &mut rng)
* (2. / last as f32).sqrt()
})
.collect(),
2022-10-09 18:33:00 +00:00
2022-10-09 18:14:22 +00:00
activ_func: ActivationFunc::ReLU,
2022-10-09 19:46:27 +00:00
mut_rate: 0.05,
}
}
pub fn crossover(a: &NN, b: &NN) -> Self {
assert_eq!(a.config, b.config, "NN configs not same.");
Self {
config: a.config.to_owned(),
activ_func: a.activ_func,
mut_rate: a.mut_rate,
weights: a
.weights
.iter()
.zip(b.weights.iter())
.map(|(m1, m2)| m1.zip_map(m2, |ele1, ele2| if r::random() { ele1 } else { ele2 }))
.collect(),
}
}
2022-10-10 18:36:14 +00:00
pub fn mutate(&mut self) {
2022-10-09 19:46:27 +00:00
for weight in &mut self.weights {
for ele in weight {
if r::random() {
*ele = r::thread_rng().sample::<f32, StandardNormal>(StandardNormal) * 0.05;
}
}
2022-10-09 18:14:22 +00:00
}
}
2022-10-09 18:33:00 +00:00
pub fn feed_forward(&self, inputs: Vec<f32>) -> Vec<f32> {
2022-10-09 18:14:22 +00:00
let mut y = DMatrix::from_vec(inputs.len(), 1, inputs);
for i in 0..self.config.len() - 1 {
y = (&self.weights[i] * y.insert_row(self.config[i] - 1, 1.)).map(|x| {
match self.activ_func {
ActivationFunc::ReLU => x.max(0.),
ActivationFunc::Sigmoid => 1. / (1. + (-x).exp()),
ActivationFunc::Tanh => x.tanh(),
}
});
}
2022-10-09 18:33:00 +00:00
y.column(0).data.into_slice().to_vec()
2022-10-09 18:14:22 +00:00
}
}